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Multi-particle structure in the &-chiral Potts models 

G von Gehlent and A Honeckert 
Physikalisches Institut der Universitst Bonn, NuDallee 12, D 5300 Bonn 1, Federal 
Republic of Germany 

Received 29 October 1992 

Abstract. We calculate the lowest translalionally invariant levels of the ZI- and 
Z@ymmelrical chiral Polts quantum chains, using numerical diagonalization of the 
Hamiltonian for N < 12 and N < 10 sites, respectively, and extrapolating N - m. 
In [he high-temperature massive phase we find that the pattern of the low-lying zero 
momentum levels can be explained assuming the existence of n - 1 panicles canying Z, 
charges Q = 1,. . . , n - 1 (mass mQ). and their scattering states. In the superintegrable 
case the masses of the n - 1 particles become pmportional to their respective charges: 
m g  = Qml. Exponential convergence in N is observed for the single-particle gaps, 
while power convergence is seen for the scaltering levels. We also veri& that qualitatively 
the same pattern appears for the self-dual and integrable cases. For general Z, we show 
that the energy-momentum relations of the panicles show a parity non-conservation 
asymmetry which for very high temperalures is exclusive due to the presence of a 
macroscopic momentum P, = (1 - 2Q/n)@, where $ is the chiral angle and Q is the 
Z,, charge of the respective particle. 

1. Introduction 

The Z+chiral Potts model was introduced in 1981 by Ostlund [l] and Huse [Z] in order 
to describe incommensurate phases of physisorbed systems, e.g. monolayer krypton 
on a graphite surface [3]. The phase structure of several versions of the model has 
been studied by various methods: mean-field, Monte Carlo, renormalization group, 
transfermatrix partial diagonalization and finite-size scaling of quantum chains [4-71. 
In the following we shall focus principally on the quantum chain version of the model. 

In 1981-82 quantum chain Hamiltonians for the chiral Potts model were obtained 
[8,9] via the s-continuum limit [lo, 111 from the Ostlund-Huse two-dimensional 
model. These were not self-dual, so that the location of the critical manifold was 
possible only by finite-size scaling 16,121. In 1983 Howes et al 1131 introduced a 
self-dual &-symmetrical chiral quantum chain, which, however, does not correspond 
to a two-dimensional model with positive Boltzmann weights. Therefore in the self- 
dual model the immediate connection to realistic physisorbed systems is lost, but 
its peculiar mathematical structure has attracted much interest: Howes et a1 found 
that the lowest gap of the self-dual model is linear in the inverse temperature, and 
subsequently in [14] it was shown that the model fulfils the Dolan-Grady integrability 
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conditions [E] (now usually called ‘superintegrability’ [16]). A whole series of E,,- 
symmetrical quantum chains has been defined, which satisfy the superintegrability 
conditions [14]. The Dolan-Grady integrability conditions have been shown to be 
equivalent to the Onsager algebra [17-191, which entails that all eigenvalues of the 
Hamiltonian have a simple Ising-type form. The well known king quantum chain in 
a transverse field is the Z,-version of the superintegrable chiral Potts models. 

Much work has been done in the past few years in order to obtain analytic 
expressions for the complete spectrum of the Z,-superintegrable model [16,20]. In 
the next section we shall quote some of these results. The aim of the present paper is 
not to add to the analytic calculations of the special superintegrable case, but rather 
to use numerical finite-size analysis in order to investigate, how the integrable model 
is embedded in the more general versions of the chiral Z3 and Z4 models. We shall 
study the low-lying levels of the excitation spectrum and investigate the possibility of 
a particle interpretation. 

In the neighbourhood of conformal points of isotropic theories, very simple 
particle patterns have been found by Zamolodchikov’s perturbation expansion [21], 
which is appIicable to the non-chiral limit of the chiral Potts models. We shall follow 
these particle patterns by varying the chiral angles, and try to find out which special 
properties of the spectrum lead, for particular parameter values, to superintegrability. 
Since for this purpose we have to study the spectrum through a large probably non- 
integrable parameter range, at present there is no alternative to numerical mcthods. 
It turns out that even in those cases which can be solved analytically, some basic 
features can be discovered rather easily through a numerical calculation, because the 
exact formulae are quite involved. 

The plan of this paper is as follows. In section 2 we start with the basic definitions 
of the chiral Potts model for general Z,, symmetry, which are then specialized to the 
Z3 and Z., cases. Section 3 collects some basic analytic results which are available 
for the generic Z,,-sy”etric model. In section 4 we give our detailed finite- 
size numerical results which confirm the two-particle interpretation of the low-lying 
spectrum of the self-dual version of the Z,-model. Section 5 discusses the analogous 
results for the self-dual version of the &-model and shows that the lowlying spectrum 
is well described in terms of three elementary particles. While up to this point, we 
consider manslationally invariant states only, in section 6 we present observations on 
the energy-momentum dispersion relations of the elementary particles and the effects 
of parity violation on the spectrum. Finally, section 7 collects our conclusions. 

G w n  Gehlen and A Honecker 

2. The chiral Z,-Potts quantum chain 

The chiral Z,sy”etric Potts spin quantum chain [14] with N sites is defined by the 
Hamiltonian 

Here gj and r j  are n x n matrices acting at site j, which satisfy the relations 

on = = 1 w = e x p ( 2 4 n ) .  (2) ujrj, = r j , u j w 6 i m j i  I 
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A convenient representation for U and r in terms of diagonal and lowering matrices, 
respectively, is given by 

m1,Vn = (mod n) .  (3) J-1 
(V)Ip  = 6r,m 

We shall assume periodic boundary conditions: rNtl = fl .  
The model contains 2n - 1 parameters: the real mverse temperature X and 

the complex constants ak and fik. We shall only consider the case of H(”) being 
Hermitian: ak = and CEk = c%*,-~. For n > 2 and generic complex ah 
and S U , ,  the Perron-Frobenius theorem does not apply and the spectrum of H(n) 
may show ground-state level crossings. commutes with the Z,, charge operator 
Q = n,”=, uj. The eigenvalues of Q have the form exp(2riQln) with Q integer. 
We shall refer to the n charge sectors of the spectrum of H(=)  by Q = 0, . . . , n - 1, 
respectively. Parity is not a good quantum number, but H(”) is translational invariant, 
so that each eigenstate of 

For ab = GLk the model is self-dual with respect to the reflection X + A-l.  If 
we choose [14] 

can be labelled by its momentum eigenvalue p. 

ak = SUk = 1 - icot(?rk/n) (4) 

then the model is ‘superintegrable’ [22], ie. it fulfils the Dolan-Grady [15] conditions 
and therefore the Xdependence of all eigenvalues E(X) of H(”) has the special 
king-like form [lS, 221: 

Here a , b  and Oj are real numbers. The mj take the values mj = - s j , - s j  4- 
1,. . . , s j ,  where s j  is a finite integer. For details concerning formula (5), see [IS, 221. 

f f k  = e’(Zk/n-’)O/sin(nk/n) fi k -  - ei(2k/n-1)? / s in ( rk /n )  (6) 

Albertini et al [22,23] have obtained a spin chain of the form (1) with 

cos ‘p= Xcos+ (7) 

as a limiting case of an integrable two-dimensional lattice model. The Boltzmann 
weights of their two-dimensional model do not have the usual difference property [23] 
and satisfy a new type of Yang-Baxter equation which involve spectral parameters 
defined on Riemann surfaces of higher genus. So a quantum chain (1) with 
coefficients (6), (7) is integrable. The superintegrable case is contained in (6) for 

A number of analytic results is available for the superintegrable case. Some 
of these will be reviewed in the next section. Starting in 1987, the Stony-Brook 
group has published a series of papers [E, 22,231 which give analytic calculations of 
the spectrum of the Z.,-superintegrable quantum chain. Recently, the completeness 
of the analytic expressions for the levels of the superintegrable Z,-model has been 
shown by Dasmahapatra et al 1241. 

In the non-chiral limiting case ’p = 4 = 0 of the Hamiltonian (1) with 
coefficients (6) we obtain the lattice version of the parafermionic Z;,-symmetrical 

‘p = + = r /2 .  
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Rteev-Zamolodchkov models Wd,-* [U]. These quantum chains are self-dual. 
At the selfdual point X = 1 and for N -t 03 they show an extended conformal 
symmetry with central charge c = Z(n-  l)/(n+Z). Exact solutions of these Wd,-, 
Hamiltonian chains [26-29] have been obtained through Bethe ansatz techniques 
[28,30]. Very recently, Cardy [31] has shown that a particular integrable perturbation 
of the critical Wd,-* models leads to self-dual chiral Pot& models. 

Since later we shall principally study the Z3 and E4 versions of (l), we now list how 
H(") spccializes for these cases. If we keep insisting on Hermiticity, H(3) depends 
on three parameters apart from a normalization [13]. In accordance with (6) we write 

G wn Gehlen and A Honecker 

Here uj and rj are 3 x 3 matrices acting at site j: 

1 0  0 0 0 1  
(9) u . =  0 w 0 

(0 0 J),  l-j= (: ; : ) j  

and w = exp(hi/3).  We shall consider 0 < X < 03; 0 < q5,p < r (for reflection 
properties of H ( 3 )  see [13]). In order not to get lost in three-dimensional diagrams, 
we shall often concentrate on two cases in which there is one relation between the 
three parameters: the integrable (INT) case, where the three parameters are related 
by equation (7), and the selfdual (SD) case where q5 = 'p. For generic 'p and A, 
the self-dual case is not h o w n  to be integrable. The SD case contains the non-chiral 
limit 'p = q5 = 0, in which we obtain the W d 2  model, which coincides with the 
E,-standard Potts model. It has a second-order phase transition at X = 1, which for 
N -, 03 is described by a conformal field theory with central charge c = 4/5 132-341. 

The phase diagram of the SD chiral E3 model show four different phases 
[22,35,36], see figure 1: for small chiral angle 'p we have ascillating massive high- 
and low-temperature phases at X < 1 and X > 1, respectively, except for a small 
incommensurate phase interval around X = 1. The two incommensurate phases 
appear centred around X = 1 and become wider in X as 'p increases. 

The Hermitian E,-symmetric H(4)  contains five parameters (again apart from a 
normalization), which we denote by A,  4, 'p, p and 8: 

N 
H(4) = -&x{e-i4'/2gj + @c; + eiV/2u3 

J 
j = 1  

+ ~ [ e - ~ + W . r 3  I J t 1  + pr;r;tl + ei+h:r j t , ] ]  (10) 
where uj and rj are now 4 x 4 matrices obeying (3). For simplicity, and in agreement 
with (6), we shall consider only the case p = = 1 /d ,  so that we have again two 
parameters for the non-self-dual integrable version, and two parameters X and q5 = 'p 

for the self-dual case. For 'p = q5 = 0 and p = 8 = 1/fi  the Hamiltonian (10) 
coincides with that of the Ashkin-Teller quantum chain (371 for the special value 
h = 1/3 in the notations of [38]. From the phase diagram of the Ashkin-Tkller 
quantum chain we know that in the case h = 1/3 there is just one critical p i n t  at 
the self-dual value X = 1. This is described by the Wd, rational model at c = 1, 
which has an extended conformal symmetry with fields of spin three and four. 
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Figure 1. Schematic phase diagram of lhe self-dual Zschiral Potts model as defined h 
equation (8). 

3. General results for the energy gaps of the E , - c h i d  Potts model 

Apart from the exact results for the non-chiral limiting case just mentioned at the 
end of the last section, there are many exact results for the superintegrable case 
(l), (4) (equivalent to (6) with 'p = 4 = v/2): The Ez  case, which is the standard 
king quantum chain in a transverse field, has been solved in [IO, 11,391. Recently, 
as mentioned above, the complete spectrum of the Z,-superintegrable quantum chain 
has also been calculated analytically 1241. We shall first collect some important partial 
results which are available for generic Zn. 

In order to state these, we shall define all gaps with respect to the lowest 
Q = 0 , p  = 0 level, which we denote by E,,(& = 0 , p  = 0). Note that 
E,,( Q = 0 , p  = 0) is not necessarily the ground state of the Hamiltonian. Depending 
on the parameters chosen, the ground state may be in any charge sector and may 
even have non-zero momentum p ,  since the model contains incommensurate phases. 
Nevertheless, in this section let us consider only gaps between p = 0 levels. 

By AEQ,j  we denote the energy difference 

&E,,; = E , ( Q , p  = 0)  - E,,(& = 0 , p  = 0) (11) 

where E ; ( Q , p  = 0) is the ith level ( i  = 0,1,. . .) of the charge Q, momentum 
p = 0 sector. In the Zz(Ising) case of (1) it is well known that the lowest gap AE,," 
has the remarkable property of being linear in A: 

AEI," = 2(1 - A) .  (12) 

In 1983 Howes a a1 [13] found that the same is also true for the self-dual version 
of the Z+hiraI Potts model, equation (8) at the special chiral angle 'p = q5 = v/2. 
They discovered this by calculating the high-temperature expansion up to tenth order 
m A, finding that for these special angles all higher coefficients in the expansion, 
starting with the coefficient of Az, are zero. 
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In [14] it was the desire to generalize (12) so as to obtain for all Z,, and all Q 
the simple formula 

AE,,, = 2Q(1- A) ( A  < l,Q = 1, .  . . ,n - 1) (13) 

which lead to the values (4) being chosen for the coefficients ah and &, and to find 
the superintegrability of the model. In [14] the linearity of the gaps was checked 
through numerical calculations. The validity of (12) for the superintegrable Z3 model 
to all orders of a perturbation expansion in X was first shown in [U] using a recurrence 
formula. Later, using analytic methods, Albertini et ai [22.,23] for the superintegrable 
Z3 case, and then Baxter [ZO] for all superintegrable Z,,, have calculated the lowest 
gaps of the Hamiltonian equation (1) in the thermodynamic limit N -+ CO. 

Using the definition (ll),  Baxter's analytic results for the superintegrable model 
can be summarized in the form: 

We now attempt to interpret the spectrum of (1) and the gap formula (13) in 
terms of particle excitations. Consider tirst equation (13). This would be obtained if 
the model contained only one single-particle species with mass ml = 2( 1 - A )  and 
E,, charge Q = 1. The lowest A Q  1 gaps would then arise from the thresholds of 
the scattering of Q of these Q = 1 particles. 

In order to check whether it is correct to describe the spectrum at 'p = 4 = 1r/2 
this way, or whether more fundamental particles must be present, we shall study 
the zero momentum part of the spectrum as a function of the chiral angles, when 
these move away from the special superintegrable values. We shall start considering 
the spectrum down at 'p = 4 = 0, where we h o w  the particle structure from the 
thermally perturbed Wd,-I models and then move towards higher chiral angles. 

The scaling regime around X = 1 of the Wd,-l models is known to contain n- 1 
particle species, one in each of the non-zero En charge sectors Q = 1 , .  . . , n - 1. 
The ratios of their masses mQ are [do]: 

The particles with masses mQ and m,-q form particleantiparticle pairs. Near 
X = 1 the mass scale m, behaves as 

ml ~ (1 - X)(" tZ) /Z"  (17) 

as it follows from the conformal dimension I = 4/(n + 2) of the leading thermal 
operator of the Wd,-l  model. Looking at (16), we can see that in the scaling 
Wd,-, model all particles are isolated non-degenerate levels in the spectrum of 
their respective charge sector. For example for the particle with mass mQ to be on 
the scattering threshold of Q of the tightest particles with mass ml, we must have 
Qs in (n /n )  = sin(QIr/n), which is possible only in the limit n -+ CO. Similarly, 
e.g. for n 2 5, the m4 particle is below the threshold m2 + mz, and approaches this 
threshold only as n + CO. 
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We now want to follow these single-particle levels in X to outside the scaling 
region and as functions of the chiral angles 'p and 4, in order to get information 
about what will happen at 'p,$ + rr/2 Since near X = 1 the gaps can only be 
calculated numerically for generic 4, 'p (we shall report such numerical calculations 
later), it is simplest to consider first the small-X expansion for the lowest p = 0 gaps 
of the Hamiltonian (1). Using the coefficients in the form (6), but not assuming (7), 
to first order in X we get 

(($ - 1) P+ 9)) 2sin(?rkQ/n) 
sin(rrk/n) sin 

Equation (18) fulfils the CP relation 

A E Q , j ( X ? p % 4 )  =AE,-g,i(X,-~3-$6) ( i = O , l , . . . ) .  (19) 

In the sum in (IS), the pairs of terms for k and n - k are equal. 

trigonometrical sum formulae 141,421 
For 'p = 0 and for 'p = r / 2  it is easy to simplify equation (18) using the 

For 'p = $6 = 0 we obtain 

+. . ,  7r 2X 
AE,,, = 2cot - - . 2n s m ( n / n )  

and 

+.... AE2,0=2co t -+2co t - -  rr 3n . 2X 
2n 2n sm(27r/n) 

We identify 

mQ E AE,,, (23) 

and conclude from (16) and (22) that the mass ratio mz/ml  must decrease when 
going from the scaling region X s 1 to X = 0. For example for n = 4, equation (16) 
gives m2/ml = 4, whereas at X = 1 from (21) and (22) we get m2/ml s 1.17157. 
Observe, that also according to (22), m2 stays below the Q = 2 sector threshold at 
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2ml  and, generally, the lowest levels of each charge sector remain isolated down to 
x = 0. 

We now examine how the perturbation formula (18) behaves in the superintegrable 
limit. Inserting 'p = 4 = r/2, we obtain 

G wn Gehlen and A Honecker 

n-1 R - I  

AEg,o = 2 x s i n 2 ( a k Q / n ) -  xsin(2r lcQ/n)cot(ak/n)-2X t . .  .. (24) 
k = l  k = l  

The sums can be calculated explicitly, leading to the simple result 

AE,,, = 2(Q - A) t O(X2). (25) 

Comparing (25) to (13), we have an apparent contradiction, since in (25) the factor 
Q is not multiplying A. 

Our detailed non-perturbative numerical analysis of the spectrum for the Z3 and 
Z4 cases (to be discussed in the next section) shows that the single-particle levels vary 
smoothly when increasing 'p and 4 starting from 'p = 4 = 0. As soon as the chiral 
angles become non-zero, the particbantiparticle pairs mQ and m,-Q split: ml 
decreases and increases as 'p and 4 increase. Approaching 'p = 4 = r / 2 ,  m2 
becomes twice as large as ml, so that at 'p = 4 = a/& m2 sits just at the ml + ml 
scattering threshold. So, our non-degenerate perturbation theoty should break down 
for the channel Q ='2 at 'p, 4 r / 2  [13], and, indeed we see this in the calculation 
of the X2 contribution to L%E,,~. Because for general Zn the explicit expression for 
the Xz term in (18) is too involved, here we specialize and give the result for the 
self-dual 7L3 case. We fmd 

AEI,o('p,A) = 4 ~ i n  - - 'p - - 4x cos $ t X*f( 'p )  t o(x3) (26) 
3 &  

where 

f(p) is smooth at 'p = r / 2  (we have f ( r / 2 )  = -&/2), but it is singular for 
'p + - a / 2 .  Applying (19), from (26) we get AE,,,: 

While formula (26) for AE,," can be used in the whole range 0 < 'p < r (considering 
non-negative 'p), the corresponding expression (28) is valid only for 0 6 'p < r / 2  
and diverges at 'p = 4 = n / 2 .  The A' contribution to the analogous Z4 formula will 
be given in section 5. It shows a similar divergence in the expression for m,. 

Since (28) breaks down at 'p = r / 2 ,  we need further information in order to 
decide whether the Q = 2 particle survives at and beyond 'p = r / 2 .  This then will 
clarify the question as to whether the single-particle picture described above makes 
sense at the superintegrable line. 
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Finite-size numerical calculation of the low-lying spectrum of the Z3-chiral 4. 
quantum chain 

4.1. Convergence exponent y 

We shall now describe several detailed numerical checks of the two-particle picture 
from the spectrum in the high-temperature massive region of the Z3 model. For this 
purpose, we have calculated numerically the eight lowest p = 0 levels of each charge 
sector of the Hamiltonian (S)  for N = 2 , .  . . ,12 sites. While in the last section, we 
concentrated on the single-particle levels, now we shall also examine the scattering 
states and check whether the corresponding thresholds appear as ex ected. 

Lanczos diagonalization we can use up to N = 12 sites. We shall always give the 
results for periodic boundary conditions, but we have also partially checked the results 
with twisted boundary conditions. The extrapolation to N i 00 is done using both the 
Vanden-Broeck-Schwartz algorithm [43] and rational approximants [U] (for details 
on the application to quantum chains and error estimation see [45]). 

Neighbouring higher levels sometimes cross over as functions of the number of 
sites N ,  so that for these there is a danger of connecting wrong sequences. This can 
be controlled by calculating the leading power of the convergence, y, defined by 

For chains of up to N = S sites we are able to diagonalize If( ! exactly. Using 

A E ( N )  - aE(00) = N-' + ... (29) 

and checking the smoothness of the approximants y N :  

(30) 
A E ( N )  - A E ( m )  

A E ( N  - 1) - AE(m) 
yN = - In 

In (29) and (30), A E ( N )  is a gap AE,,; calculated for N sites. 
The calculation of yN is also very useful for distinguishing between single-particle 

levels and two or more particle scattering states. For single-particle levels we expect 

AE(  N )  - aE(00) = exp( - N / [ )  + . . . (31) 

i.e. exponential convergence in N ([ is a correlation length), so that for these the 
yN should increase very fast with N .  In contrast to this, for two-particle states we 
should have a power behaviour in N, more precisely, we should have lim yN = 2. 

4.2. The specmim for the superintegrable case 'p = T 12 

We first discuss our numerical results for the Z3-superintegrable case 4 = p = r / 2 .  
Dble 1 lists results for 16 low-lying gaps for X = 0.5 in the high-temperature regime, 
where from (12) we know that ml AEQ,l,u = 1. As we have checked by 
repeating the calculation for several other values of X < 1, this value X = 0.5 is not 
special regarding the structure of the spectrum. However, there is the nice feature 
that because of (13) for this X the gaps should approach integer values in the limit 
N i 03. 

In the Q = 1 sector we see an isolated lowest state at ml = 2(1 - A )  followed 
by a bunch of levels at 4m1. Looking at table 2 which gives the convergence with N 
as parametrized by y according to (29), we see that, indeed, the ml level (Q = 1; 

N-CC 
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lsbk 1. ?he lowesl energy gaps AEQ,;. as defined in equation (ll), for the Za- 
Hamiltonian equation (8) and the supPrinlegrable case q = 4 = n/2 ,  X = 0.50. 
me numbers given in braekels indieate the estimated ermr in lhe last wlitten digit. 
All calculations ot lhe gaps have teen performed 10 l2digil accuracy and using all 
N = 2 ,  . . . ,12 sites for the extrapolation N -+ m. In order to w e  space, in lhe 
tables we &e less digits and omit the low-N data. Details on our determination of the 
exponent of convergence y. defined in (29), (30) are given in table 2. In the last line 
of each table, we give our particle interpretation of the various levels, as deduced korn 
the result for y. 

N i = l  2 3 4 5 6 I 
AEQ=o,~  
I 3.1598983 4.8359585 4.4520381 5.9303616 5.9032240 7.0487030 6.3557191 
8 3.1115649 4.4240923 4.2015361 5.4868664 '5.5496114 63987521 6.0338101 
9 3.0800411 4.1213280 4.0168334 5,1252880 5.2384091 5.8572524 5.1243691 

10 3.0604137 3.8954662 33661605 4.8291326 4.9100825 5.4121114 5.4423101 
11 3.0463166 3.1244809 3.7455652 4.5861195 4.1406004 5.0471104 5.1917195 
12 3.0362806 35932058 3.6478379 4.3856960 4.5446740 4.1471645 4.9114669 
m 29998(3) 2 9 8 6 0  3.01(1) 3.02(8) 3.05(6) 29(1) 2.95(8) 

? 
? 

Y 3 . w  290) 2w 2 W )  1.9(1) 28(6) 
m l + m l  mr+m? mr+m? 3mr 3mr 3ml 

N i = O  1 2 3 4 
AEQ=I,, 
7 0.9984874 4.5113085 5.7905491 66049111 6.1612566 
8 0.9594289 4.3160023 5.4775432 6.M852A2 5.8456341 
9 0,9998044 4.2809972 5.2349161 5.6151153 55870148 

10 0,9999405 4.2150150 5.0442562 5.3652165 53149672 
11 0,9999851 4.1680556 4.8924532 5.1235143 5.2002368 

m 1.0000000 3.99(2) 4.00(1) 4.01(5) 4431(3) 
12 0.9999978 4.1336962 4 . n o o m  4.9335093 5.05521544 

y q o n .  3.002) W) 29(2) 1.9(1) 
mt Z m t + m z  2% 2m1+mz 2mz 

N i = O  1 2 3 4 5 
A E Q = ~ , .  
7 1.999 512 6 2.190 1313 
8 1.9996761 2.6389905 
9 1.9998304 25261089 

10 1.9999247 2.4399601 
11 1.9999701 2.3729391 
12 1.9999893 2.3198948 

y expon. ZO(1) 
m Z.0001(1) Zaa(7 )  

m,. 2mr 

4.319 8245 5.663 341 7 
4.0256344 5.3106885 6.0425834 

3.4970152 4.658 3108 5.516691 9 
3.300 895 8 4.380 869 4 5.31 1 051 I 
3.1384011 4.1365971 5.0527923 

3.13518i8 4 m n 5 3  5.8323103 

2" 20(1) 2 4 5 )  
1.9(1) 1.9(2) ? 
2ml 2 m ~  ? 

61294869 
5.846 839 0 
5.6487319 
5.506 540 0 
5.402 260 4 
5.3242910 
4.99(1) 

mt i 2m9. 
29(2) 

column i = 0) shows exponential convergence, whereas the levels Q = 1; i = 1, 2 
converge as N - 3  and N - Z ,  respectively. This indicates that the i = 1 level is due 
to three-particle (m, + ml + ml) scattering, and the i = 2 level due to two-particle 
(m2 + m2) scattering, as shown in the bottom line in table 1. 

The Q = 2 sector shows no isolated ground state, but starts with a bunch of 
levels around A E  = 2 There is strong evidence for another bunch around A E  = 5, 
of which table 1 shows just the first level. The convergence for the further A E  = 5 
levels is poor and we do not give the numbers. A clue to the nature of the A E  = 2 
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Tbbk 2. Exponents y~ of the convergence N -+ m as defined in equation (?€I). lor 
the Zs-superintegrable case and X = 0.5 for the lower levels given in table 1. ‘expon.’ 
means that Ihe fast increasing sequence of the YN indicates exponential convergence. 

YN for AEq=o,. YN for AEQ=I,~ YN for AEQ=~.*  

N i = l  2 3 4 i = o  1 2 i = o  1 2 

7 26413 1.7475 1.2814 14998 5.6670 21812 1.3354 1.5124 1.0720 
8 26955 1.9024 1.3808 1.2290 7.2946 23893 1.4389 20775 1.5900 1.2068 
9 27348 20293 1.4594 1.3340 9.0948 24728 1 5 7 3  5.4923 1.6503 1.3140 

10 27646 21348 1.5222 1.4212 11.2974 25376 15917 7.7025 1.6973 1.4013 
11 27879 22232 1.5731 1.4947 14.5079 25883 1.6482 9.6994 1.7340 1.4733 
12 28067 22916 1.6148 1.5573 21.8070 26287 1.6948 11.7909 1.7633 1.5324 
oc, 3.0(1) 29(2) ZO(1) 21(1) expon. 3.0(2) Z.O(l) expon. Z q l )  1.9(1) 

levels is found through their convergence for increasing N .  Bble 2 shows clearly 
that the level labelled Q = 2; i = 0 has an N-dependence which drastically differs 
from that of the other levels, indicating that this is the level of a single particle with 
mass m2 = 4( 1 - A) (we have checked the Xdependence repeating the calculation 
for six other values of A). So, we can answer the question posed at the end of the 
last section: the m2 level can be clearly seen in the superintegrable case, although 
it lies at the edge of the scattering threshold. The power-behaved Q = 2 states at 
D E  = 2 should then be interpreted as ml + ml states. The level Q = 2; i = 5 may 
be ml f m2 + m2, which has the correct total Z,-charge Q = 2. 

The pattem at Q = 0, A E = 3 is as expected by this picture. There should be 
m1 + m2 states and ml + ml + m, states, both distinguished by different values of 
y, as obselved in tables 1 and 2. 

For other values of X ranging from X = 0.2 to X = 0.8 we find precisely the 
same structure. Not surprisingly, above X = 0.8 the convergence with respect to N 
becomes poor, since the relevant mass scale ml vanishes as X + 1 and so at X = 0.8 
it is already quite small. 

4.3. The specmim off the superintegrable line 

After having found a simple two-particle pattern in the superintegrable case, we now 
check how this structure is modified for p,+ # x / 2 .  In order not to vary too many 
parameters, we consider only the INT and SD cases defined at the end of section 2 
For the INT case explicit formulae for the spectrum are not yet available (for some 
first attempts, see [&I). For the SD case there may be no integrability at all. So, 
for the following, there is currently no alternative to our numerical or perturbative 
methods. 

We start with the SD case. In section 3 we discussed the perturbation expansion 
of the lowest gaps to order Xz. This indicated that increasing p from the Potts value 
9 = 0 to ‘p = lr /2  for fixed X < 1 decreases the mass ml and increases mz until 
for p = r / 2  we reach the value mz/ml = 2. Above ‘p = x / 2  we should then have 
mz/ml > 2 which makes it difficult to isolate the Q = 2 particle in the ml + m, 
continuum (iC it is there at all). Figure 2 shows the different patterns which we expect 
in the three charge sectors for p < x / 2  (left-hand side) and for p > x / 2  (right-hand 
side). The extrapolation of the finite-size numbers reported in table 3 confirms all 
details of these expected patterns. For p = 2 r / 3 ,  among the three lowest Q = 2 
levels at A E  = 2m, we see no exponentially converging level. For (o > n/2 all 
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thresholds are determined by m,  alone, these are 3ml, 4ml and 2ml for Q = 0, 1, 
2 sectors, respectively. 

G von Gehlen and A Honecker 
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Figure 2. Level SINCIUE for the self-dual Zrchiral PotIs model m the high-temperature 
massive region: left-hand side, for a chin1 angle Q < T / Z  @elow the supcrinregrable 
value); right-hand side, Q > ~ / 2  (above the superintegrable value). In the !mer case 
the thresholds are determined @ ml alone. 

'Igblc 3. The lowest energy gaps A E g , ,  (extrapolated N -+ 00) of $he self-dual Zvmodel 
(a), for X = 0.5 and two values of Q: Q = ~ / 4  (below Ihe superintegrable line), and 
Q = 3a/2 (above the superintegrable tine), fogether with their particle interpretation. 

r$ = Q = n/4, X = 0.5 q5 = Q = 2 ~ 1 3 ,  X = 0.5 

Q i AE9,i(m) Particles Q i AEg,;(m) Particles 

0 2 3.85(3) mr + m ?  0 2 1.8OiS) 3m7 
0 1 3.9150(2) ml t mz 0 1 1.75(1) 3m1 

. .  - 
0 3 3.98i4) ml t mz o 3 1.~(i)' 37% 
0 4 4.70(8) 3m1 1 0 0.5868(2) s m l  
0 5 3.90(5) ml t mz 1 1 2.36(4) 4m1 
1 0 1.5834366(1) 2 0 1.174(2) Zmi 
1 1 4.68(1) 2mz 2 1 1.18(2) 27% 
2 0 2.339607(1) =mz 2 2 1.19(5) 2ml 
2 1 3.168(4) Zml 
2 2 3.17(5) Zml 
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In order to see whether the Q = 2 particle survives in the 'p > s / 2  region, we 
have to look for more and higher levels. For mal l  X we know from equation (28) 
(supposing this to be still valid) where to search for m2 at p > s/Z, and so we have 
looked slightly above the superintegrable line at 'p = 7s/12, X < 0.25 among the 
eight lowest levels for a rapidly converging one. Indeed, as is shown in table 4, the 
level i = 6 of the table converges much faster than its neighbours. So, it is a good 
candidate for the m2 level. However, with increasing X this convergence diminishes 
quite fast and an even/odd N hopping takes over. This may be due to the increasing 
instability of the m2 particle. 

Tabk 4 Selected Q = 2 gaps for 'p = 7n f 12 (slightly above the superintegrable line) 
d the d - d u a l  Z3-model. 'Ihe numbering of the levels (i = 0,. . .) refers to N = 12 
sites, for a smaller number of sites there are fewer levels between i = 0 and i = 5. 
The values of ml are very well determined lxcause of fast convergence. Observe that 
the i = 0-levels converge excellently to Zml. In both cases level i = 6 converges 
much faster with N than the other levels, which may indicate that this is the m2 level. 
Non-monotonic behaviour in N is " n o n  in the neighburhood of the incommensurate 
phase. 

A E Q = ~ , ; ( ~  = 7r/12, X = 0.10) 
ml = 1.503 358 45 

N i = O  5 6 7 

7 3.03919 3.58623 3.89205 7.99416 
8 3.03222 3.726% 3.89343 7.90458 
9 3.02727 3.656 40 3.892 85 7.83788 

10 3.02363 3.14332 3.89313 7.18699 
11 3.02088 3.69394 3.89301 1.74732 
12 3.01875 3.75171 3.89306 7.71579 

A E Q = ~ , ~ ( ' ~  = 7x/12, X = 0.15) 
ml = 1.411 316 11 

i = O  5 6 7 

2.858 47 3,85581 3.98085 7.57893 
2.85177 3.752 62 3.961 89 7.49035 
2.84678 3.895 47 3.979 10 7.423 10 
2.842 97 3.818 57 3.967 35 7.370 73 
283999 3.91801 3.97795 7.32905 

2.86777 3.63650 3.95076 7.6992 

For 'p < s / 2  the threshold in the Q = 0 sector also depends on m2, being 
ml + m2. 'Ihe left column of table 3 shows that the numerical values for the various 
thresholds come out very well and that, for example, m2/ml = 1.47755 at p = s/4 
and X = 0.5. Unfortunately, the determination of the corresponding values for y is 
quite unsafe, since for 'p # s / 2  we have no exact values for lim A E i  available 
as we had in the superintegrable case from (13). So the results we obtain for the 
yN depend strongly on the very unprecise extrapolated results which are used for 
AEi(03). 

4.4. The integrable case for p # s /2  

lbrning now to the integrable case wr, our data in table 5 show the same pattern 
as in the SD case, only the convergence is less good (for the sake of brevity we have 
omitted the finite-size data). It is not clear whether the AEg,z,o level converges 
exponentially at all. This result is somewhat surprising, because one might have 
expected behaviour which was more clearly particle-like in the integrable case. We 
recall that nothing is known about the integrability of the general sD case. 

There is not much difference between the SD case (table 3) and the INT case 
(table 5). For example observe that in the right-hand part of table 5, which gives an 
example for chiral angles above the superintegrable value, the low-lying gaps come out 
clearly as integer multiples of the single scale ml, as is expected for threshold values 

N-rm 
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'Isbk 5. h e s t  energy gaps AEg,i  as in table 3, but for two different droiaes of the 
parameters in the integrable &-model case, in which 'p and + are related by (7). On 
the left-hand side we give an -ample u i th  chiral angles below the superintegrable case, 
on the right-hand side g 5 ) ~  are taken above their superintegrable values. 'The pattern 
observed here is very similar to that of the selfdual case in table 3. 

'p = 7~14, 4 = 19.47.. .(deg) 
X = 0.7.5 

'p = 2% 1% $ = 135.58.. .(de@ 
X = 0.70 

Q i AEq,i(m) Particles Q i AE,,,(oo) Particles 

0 1 1.933(2) ml + m2 0 1 l.SO(1) 3ml 
0 2 1.9(2) m l +  m2 0 2 1.53(5) 3m1 

1 0 0.750(1) Em1 1 1 1.99(1) 4m1 
1 1 2.41(2) 2mz 7. 0 0.595(1) 2mi 
2 0 1.19(2) Em2 2 1 l.W(1) Zm1 
2 1 1.50(3) Zm1 2 2 1.04(5) 2ml 

0' 3 1.8(3) m l +  m2 1 0 0.495(2) em1 

2 3 2.52(51 5mr 

if m2 > 2ml. The numerical precision is not very good because in the neighbourhood 
of the incommensurate phase the finitesize approximants to, for example, ml frrst 
fall with N and then rise again, a property which is not easy to handle by usual 
extrapolation procedures. 

Apart from the just mentioned non-monotonous behaviour of the gaps for 
increasing N, the onset of the incommensurate phase is not felt in our study of 
the p = 0 levels even at p = q5 = 5?r/6, X = 0.5. For still larger angles, it 
becomes difficult and then practically impossible to arrange the gaps for various N 
into plausible sequences. Anyway, it is already surprising that for p = ~ / 2  and 
higher, the low p = 0 gaps do not seem to take any notice of the incommensurate 
phase boundary, and vanish smoothly for X - 1. 

In the low-temperature regime X > 1 the pattern of the lowest levels is the same 
in all three charge sectors. As expected, in the limit N + w the ground state is 
threefold degenerate (one isolated level in each charge sector). Above the ground 
state we find for p < ~ / 2  a gap which is X(m,(X-') t mz(X-')). Then we see a 
quite dense sequence of levels starting after a gap of 3Xml(X-') (the same gap in 
all three charge sectors). If we would have normalized including a factor 6 
in the denominator of (S), the gaps would be just the same as those in the Q = 0 
sector at the duality reflected value of A. This is a generalization of Baxter's result 
(15) for the superintegrable case to p < ?r/2 

5. Perturbative and finite-size numerical results for the spectrum of the c h i d  E,- 
quantum chain 

In the last section we reported our numerical evidence for a two-particle picture of the 
spectrum of the off-critical chiral EZ,-Potts quantum chain. In this section we shall give 
analogous numerical evidence for a three-particle structure in the high-temperature 
regime of the chiral Z,-Potts quantum chain. 

We start giving the high-temperature expansion of the lowest gaps of the self-dual 
Z,-quantum chain up to order A*. It reads explicitly 

AE,," = 2(1 t 2sin +(T - 2p))  - 2 X v 5 ~ s ( p P / 2 )  + X*g(p) t 1 ' '  (32) 
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AE2,"=4Jzcos('p/2)-2X+X2h('p)+ ... (33) 

A E , , ~ = 2 ( 1 + 2 ~ i n ~ ( ? r + Z ' p ) )  -2X~co~( 'p /2 )+X~g( - ' p )+  ... (34) 

where g and h are the following functions 

(1 - J z c o s  ( 'p/2)  + 2co2 ( 'p /Z) ) .  h(Ip) = -- 2 
cos 'p 

The function h ( p )  is singular for 'p -+ n/2, similarly, g('p) is singular for 'p -+ -?r/Z. 

Of course, (34) follows from (32) by a CP transformation, see (19). At 'p = q5 = 0 
the sectors Q = 1 and Q = 3 are degenerate. 

At 'p = 5 ~ / 6  and X = 0, according to (32) the gap AE,,, vanishes, and above 
this value of 'p the ground state of the system is in the Q = 1 sector. This feature is 
due to the particular choice p = 1/& which we made after (10). If we consider more 
general p, then this ground-state level crossing moves to 'p = ?r/2 t Zsin-'(p/&). 
So, for p 1 the ground state remains in the sector Q = 0 up to 'p = ?r. 

For 'p above its superintegrable value 'p = ?r/2 (with p = l/&) the scattering 
thresholds in all sectors are determined by ml 5 AE,, ,  alone, and the 'single- 
particle gaps' equations (33) and (34) move above the scattering thresholds in the 
sectors Q = 2 and Q = 3, respectively. This is quite analogous to what happened in 
the Q = 2 sector of the iz, model. 

For all X > 0 the Q = 2 gap is larger than both the Q = 1 and Q = 3 gaps. For 
small values of X both AE,,, and AE,,, decrease with increasing 'p, while AE,,, 
grows. At 'p = ?r/2 the gaps are integer-spaced. 

The high-temperature expansion is reliable for small X and the lowest levels only. 
So, for larger values of A, we have numerically calculated the six lowest p = 0 levels 
of each charge sector for the Hamiltonian (10). In the Z4 case we are able to handle 
up to N = 10 sites only. Correspondingly, the extrapolations are less precise than in 
the case of Zy 

First, we present our results for some low-lying levels in the spectrum for the 
superintegrable case of (10): 'p = = n/2,p = p = 1/a. Bble 6 contains the 
results at X = 0.5, where from (13) we should have ml = 1, so that we expect the 
gaps for N -+ 00 to approach simple integers. Indeed, this comes out well from our 
numbers. As before, we have checked for four other values of X to ensure that there 
is nothing special about choosing X = 0.5. 

In each of the Q # 0 sectors we see one level which shows very fast convergence 
with N, and we identify this with the single-particle state of mass mQ = Q. 

In the charge sector Q = 0 we can evaluate the four lowest gaps preclsely enough 
to assign them to A E  = 4. There should be four different types of scattering states: 
m, + m, + ml + m,, ml f ml + m2, m2 + m2 and ml + m3. While the exponents 
determine the first two types, we would have to move away from 'p = 4 = ?r/2 in 
order to distinguish the two latter states. In the sector Q = 1 we see two excited 
states in addition to the m,-particle state. They could be one threeparticle and one 
two-particle scattering state, both with A E  = 5. This is compatible with the expected 
states ml t m2 t m2 and m2 + m3. 
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Tabk d ?he lowest energy gap AEQ,;, as in table 1, but here instead of the Z> case 
now for the Z+Iamiltonian equation (10). Superintegrable case 4 = 'p = r J 2  for 
X = 0.5. Note the wershooting in the appmllimanu for ml and ma, 

N i = l  2 3 4 * = o  1 2 

4 4.4870349 6.6401198 6.9386000 1.1202527 0.9782260 6.2907501 8.8182343 
5 4.2443835 6.2079844 6.3448347 6.4390186 0.9932173 5.7339386 7.9355672 
6 4.1352996 5,6907770 5.9280172 6.0208759 0.9985194 5.4429212 7.2245463 
7 4.0807817 5.3191415 5.5469396 5.7278675 0.9999564 5.2809826 6.809831 1 
8 4.0511625 5.0477033 5.2606178 5.2880905 1.W1440 5.1860132 6.4550439 
9 4.0339657 4.8460464 4.9582447 5.0427288 1.W00921 5.1211432 6.1875836 

10 4SR34306 4.6936534 4.1248803 4.8744612 1.0000390 5.W05.398 5.9834045 
CO 4.ooaO(2) 3.89(2) 3.9(9) 3.7(4) l.wOl(1) 4.97(3) 5.7(6) 
v 4.0(2) 2.1(3) 2.9(4) 1.6(1) expon. 3 3 3 )  1.8(1) . .  . ,  . .  . .  . .  

4m1 2m2 or 2 m 1 t  mz 2 m z o r  ml ? m2'+ m3 
m l  t m3 m1 + m3 

AEg=z,, AEQ=?.& 

N i = O  1 i = O  1 2 

4 1.976W81 3.6344881 3.0090309 5.0106873 5.4135243 
5 1.9885583 3.1951141 2.9918592 4.4899244 4.9297443 
6 1.9959972 2.9027708 
7 1.9989351 2.7013088 
8 1.9998278 2.5582804 
9 2.0000213 2.453 947 6 

10 2,0000330 2.315911 1 
m Z.WOOl(3) 1.9(1) 
Y T o n .  1.9(1) 

mz 2m1 

2.998022 4 4.104839 3 4.552 086 2 
2.9991277 3.8412387 4.2.536142 
2.9991209 3.6558602 4.0432463 
2.9999379 3.5222415 3.8733462 
2.9999964 3.4237046 3.7406336 
3.00001(6) 2.8(2) 3.02(4) 
expon. 2.1(2) 1.1(2) 
m~ m l t m ?  m i t m 2  

The numerical convergence of the scattering levels and the possibility of ordering 
the levels into clear sequences in N gets worse if we consider the sectors Q = 2 and 
Q = 3. In the bottom line of table 6 we give a few quite safe assignments. 

We now look numerically at how this particle pattern is modified if we choose 
values of the parameters 4 # r / 2 ,  p # r / 2  for which no analytic results are 
available. In table 7 we have collected the first few lowest energy gaps for three 
choices of the parameters. 

Fmt, we look at values of 4 = cp < r / 2 .  For 4 = cp = r/4 (which is half-way 
to the W-point) and X = 0.5 the masses of the m2 and m3 states are clearly below 
the scattering thresholds and the remaining levels can be excellently explained as 
multi-particle states. In the charge-sector Q = 2 there is one state with A E  = 4.6 
which seems to be unexplained by this pattern. However, the extrapolation N -t M 

is quite delicate and therefore the errors may be too small. Thus, this state could 
also be a 2m1 state. 

If we choose 4 = 'p > r / 2 ,  the low-lying levels of the spectrum are given by ml 
alone. However, for small values of X and 4 slightly above the superintegrable line 
the Q = 2 charge sector shows a high level that converges very rapidly and is not 
an integral multiple of ml. The middle part of table 7 contains the explicit d u e s  
for 4 = q~ = 3r/5 and X = 0.10. Here, the m2 particle is still clearly visible as a 
high level in the Q = 2 sector. Unfortunately, the m3 particle is not visible in the 
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3m, continuum. 
The right column of table 7 shows that basically the same patterns can also be 

observed in the n'lT case although here the approximation is less good. 
'Ib summarize, our numerical data support a three-particle interpretation of the 

low-lying spectrum for the chiral ?&-Pot& quantum chain with 'p in the range &om 0 
to slightly above r/2. 

G von Gehlen and A Honecker 

6. Energy-momentum relations for the single-particle states 

When interpreting the excitations of the model in terms of particles, we should also 
look for their energy-momentum dispersion rule. On a lattice with N sitcs and 
periodic boundary conditions, the momentum p can take the N values 

p = - [ E N ] ,  . . . , - l , O ,  1,. . . ,[:NI. (37) 

In calculating the limit N + 03 we use 

(38) 
2a p = -  (-7r 6 P 6 a). N "  

Apart from the Wd,-, case # = 'p = 0 the Hamiltonian (1) does not conserve parity, 
so, in general, the curves E ( P )  will not be symmetrical with respect to P -+ -P. 

An expansion to fast order in X gives a first orientation of the energy-momentum 
relation near X = 0 for generic Z,. In an easy generalization of (U) we find, for 
Q # 0, 

where 

P, = (1 - 2Q/n)#. (40) 

In the second line of (39) we have inserted the definition (6) of mk in the Xdependent 
term. Since, to first order in A, the first term of (39) contains no P-dependence, we 
see that, in the high-temperature limit, the violation of parity in the dispersion relation 
of the particle with charge Q is exclusively due to the presence of a macroscopic 
momentum P, as given in (40). A particle and its antiparticle feel macroscopic 
momenta which are opposite in sign. 

In the parity-conserving case 'p = # = 0 the system can be made isovopic between 
space and Euclidian time rescaling the Hamiltonian by a suitable A-dependent factor 
[. So, for 'p = + = 0 the particle will have the energy-momentum relation of the 
lattice KJein-Gordon equation 
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or 

E2 = m i  + [' K2 

where 5 is the rescaling factor, and we write 

K = 2sin(P/2) mQ = pQ[. (43) 

The correct conformal normalization factor [ for the Wd,-l quantum chains at 
the critical p in t  X = 1 is well known [27,34]: 

[(A = 1) = 12. (44) 
Using formulae (39) and (21), (22), the mQ and the rescaling factors for the Q = 1 
and Q = 2 particles of the Wd,-l chains near X = 0 can be calculated explicitly. 
The mQ for Q = 1,2 have been given in (21), (22) and (W), from which we find 

A .E2," = 2 cot 
2x (1 - K 2 / 2 )  + . . (46) 

from which we get different rescaling factors for particles with different charge. 
Defining 

C=nJT; (47) 

(coinciding for X = 1 with (U)), for small X we obtain 

Putting in numbers, we find that the main variation of the tQ over the whole range 
0 < X < 1 is determined (for low values of n) up to 10. .120% by the factor C. For 
example for E4 at X - 0 we have 

lim [Q=l/C = 0.92388,. . lim [B,z/C = 0.84090.. . (50) 
A 3 0  X-U 

similarly for higher n. For the king case n = 2 we have exactly EQz1 = C for all X 

For 'p = + = 0 the WO parameters [ and mq determine the dispersion curve 
exactly. For example in the Wd, case (n = 3) we find for X = 0.00, 0.25, 0.50, 0.75, 
0.90 

[471. 

mQ = 3.46410162 3.58582824(1) 3.674214(2) 
(1 - X)5/6 

3.73(3) 3.8(1) 
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and 

c 
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= 0.9428090 0.9751702(1) 0.996697(2) 1.008(6) l.OO(1) 

respectively. At X = 0.75 and X = 0.9 we observe non-monotonic behaviour for 
the levels with N which gives rise to a considerable uncertainty in the extrapolation 
N --f CO. At lower values of X the exponential convergence has already clearly set in 
below N = 12 sites, so that there we may trust the extrapolation. 

For X + 0 the masses determining the N convergence go to infinity. So for 
X = 0 there is no N-dependence, once a minimal value of N ,  dictated by the 
nearest-neighbour interaction, is reached. This is in agreement with (48) and (49) 
and shows that the high-temperature expansion around X = 0 at the same time is 
also a non-relativistic expansion of (41). For the Wd, case we have checked that the 
order Xz term of (45) agrees with the second-order expansion term of (41). We find 

(53) 

(54) 

2 
AE,  = -(3 - X(2 - K 2 )  - X2(1 - KZ f K4/6) + ' .  .) ' v 5  

which fits to the form 
&El,, = m i +  ( t W 2 / ( 2 m i )  - (SK)4/(8m:) + .... 

So, certainly to this order, the momentum dependence of the Wd, single-particle 
level m, is that of the Klein-Gordon equation (41) or (42). 

We have no physical interpretation as to why, for low n, the ratio cQ/C varies 
so little with X (in the n = 2 case we have E E c), and we find it strange for the 
particle interpretation that, in general, t Q ( X )  is Qdependent. 

For the Z+uperintegrable case Albertini et al [22] have given analytic formulae 
and plots of the energy-momentum dependence of the m, particle in the high- 
temperature range 0 < X < 1, and for the fist Q = 0 excitation in the low- 
temperature range X > 1. Here we want to give simple approximate expressions 
for the dispersion curves of both Q = 1 and Q = 2 particles, not only for thc 
superintegrable, but also for the general selfdual G-chiral model at 0 < X < 1. 

For p, 4 > 0 we have no simple analytic form for the dispersion equation and so 
we have performed fits to the curves E( P) given by 

3 

E ( P ) =  Cu,cosm(P-P, )+ b,sinm(P-P") (55) 
m=O m=1,3 

which are good up to X x 0.6. Bble 8 collects some of these fitted coefficients. 
For X < 0.5 the convergence in N is excellent for all p if we use up to N = 12 

sites. For X < 0.1 we can nicely fit the data for the momentum dispersion of the 
Q = 1 particle just using equation (39). For larger values of X inspection of the 
numerical curves and the fits in table 8 shows that P, decreases with increasing X 
and, in addition, the curves start becoming unsymmetrical with respect to P = P,. 
The larger the angle p, and the larger X is the more terms in the expansion (55) 
are needed for a reasonable fit. Figures 3 to 5 show momentum distributions for 
various values of X and 'p together with our fitted curves. As is seen from figure 5, 
for 'p = 2 a / 3  and X = 0.5 more terms in the expansion would have been needed. 
As we approach the incommensurate region, cg. at 'p = 5~/6, X = 0.3, other levels 
are below the m, level at I P I> a/2, so that the identification of the m, dispersion 
cuwe becomes difficult. It may be that in this region new particle types will show up. 
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Figure 3. Energy-momentum relation of pallicle mi for the &-superintegrable m e  and 
various values of h e  inverse temperature X in the high-temperature region. The small 
m e s  and triangles are 6nite-size values calculated for N = 6, . . . , 12 sites. 
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MOMENTUM P =  2 k n / N  

Figure 4 Same as figure 3, but for 1p below the superintegrable value and both for ml 
(three broken curves) and m2 (full curve). 

7. Conclusions 

We have shown that the low-lying spectrum of the massive high-temperature regime 
of the selfdual Z.,-Potts quantum chain at low c h i d  parameter values $P 5 2 ~ / 3  
can be described in terms of n - 1 particles which carry Z, charges Q = 1, . . . , n - 1 
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-n -n/2 0 n / 2  n 

MOMENTUM P= 2kn/N 

Figure 5. Same as figure 3. but for w e m l  values of 'p above the superintegrable value 
(towards the incommensurate region), for the Q = 1 particle ml. The shift of the 
minima of the N N ~ S  10 the right due to the macmscopic momentum P, b clearly seen. 

Table 8. Coefficients of fits to d e  energy-momentum relation equation (55) for various 
~p and A, all for the self-dual model. Except for the last line, which is for the lowest 
Q = 2 gap, all other Ets are Cor the lowest Q = 1 gaps. The quality of the fits can be 
judged kom figures 3, 4 and 5. In the last mlumn we quote 'pm, which we define Ly 
P. = 'pm13. 

'P (d%) A Q O  a1 4 2  a3 bt b3 vm (de@ 
45 0.5 2 . ~ 4 5  -0,5924 -0.0549 -0.0075 a0033 39 
45 0.50 ~.0302 -1.1653 -0.7355 -0.0764 -aom 30 
45 0.75 3.3502 -1.6702 -0.6028 -0.2300 0,0864 -a2121 18 
90 0.25 213436 -0.5118 -0.0412 -0.0848 -0.0112 81 
90 0.50 2.7363 -1.1331 -0.2381 0.0014 -0.0188 69 
90 0.70 24363 -1.4587 -0.4244 -0.1190 -0,0757 -a0112 57 
90 0.85 2.6161 -1.5982 -0.5752 -0.2791 -0.1981 -0.M45 39 

120 0.25 1.4317 -0.5570 -0.0552 -0,0022 -0.0263 105 
120 0.50 1.5407 -0.8112 -0.0909 -0.2517 -0.3291 57 

45 0.50 3.7927 -1.1973 -0.1501 -0.0874 -0.3223 - 45 

150 0.20 0.7281 -0.4696 -0,0028 0.0451 0.0013 150 
171 0.10 0.2257 -0.2260 -0.0128 -0,0009 171 

(we denote their masses by mQ). This is seen by studying the variation of the Single- 
particle masses from their K6berleSwieca values at zero chirality 'p = 0 up to and 
above the superintegrable value 'p = ~ / 2 .  For low-inverse temperatures X we use a 
perturbation expansion. For higher X we concentrate on the special cases n = 3 and 
n = 4 and diagonalize the Hamiltonian numerically. 

In the Z3 case the mass ratio m2/ml is shown to rise continuously from 
mz/ml = 1 at 'p = 0 to m2/ml = 2 for the superintegrable case 'p = n/2. In the 
superintegrable case the Q = 2 particle appears precisely at the ml + ml scattering 
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threshold. For ‘p + ?r, ml tends to zero. How far the Q = 2 particle sulvives for 
‘p > ? r / Z  is not clear. In table 5 we give evidence that the Q = 2 single-particle level 
is stiIl present up to X = 0.15 and ’p = 7?r/12. In the superintegrable case we identify 
two- and three-particle scattering states through their different power behaviour in 
the chain sue N. The two single-particle levels show exponential convergence in N. 
The perturbation expansion of mz is shown to diverge at order Xz for cp + 7r/2 

At small A, the non-conservation of parity in the model results only in the 
appearance of a Qdependent macroscopic momentum P, = (1 - 2Q/n)# in the 
energy-momentum dispersion relations of the particles, which is P, = f4/3 in the 
Z3 case. Our numerical data suggest that the average P, decreases with increasing 
A, perhaps P, + 0 for X + 1, but we have no simple parametrization of the 
effects of parity violation at large X and restrict ourselves to giving trigonometrical 
fit coefficients. 
Using the same methods we have also verified in detail that the high-temperature 

massive spectrum of the chiral Z:,-Pot& quantum chain can be described analogously 
in terms of three massive particles with &-charges Q = 1, 2 and 3. In the 
superintegrable case the mass ratio equals the ratio of the charges, such that now 
both the Q = 2 and Q = 3 particles appear at scattering thresholds. As before, the 
scattering states can easily be identified by their power behaviour in the chain length 
N, while the single particles show exponential convergence with N .  

It would be interesting to use Liischer’s [a] method to obtain numerical 
information on the phase-shifts or the S-matrix from the Ndependence of the multi- 
particle states. 
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